Synergism in Using NPWT With Alternated Applications of Autologous Platelet-derived Growth Factors

Login to Download
PDF version
Author(s): 
Leon Gurvich, ANP, MS, MPH, CWS

Abstract: Chronic and acute wounds with long tunneling or undermining are always a challenge to wound care providers. One of the most frequently employed treatments for closing tunneled or undermined wounds is negative pressure wound therapy (NPWT). The benefits of this treatment system are widely discussed in the professional literature, and will not be covered here. Even though NPWT allows for faster wound healing initially, in some cases, progress to wound closure is limited and healing stops after reaching a maximum potential, which may occur after just a few weeks. This adverse phenomenon is more common when the wound exhibits deep tunneling or has been extensively undermined. Trying variations of NPWT strategies geared toward closing these wounds is usually unsuccessful. This article describes cases where combined therapy, using the V.A.C.® Therapy System (KCI, San Antonio, Tex) and the autologous platelet-derived gel, AutoloGel™, (Cytomedix, Rockville, Md) was employed.



Address correspondence to:
Leon Gurvich, ANP, MS, MPH, CWS
L. Weiss Memorial Hospital Wound Healing Center
4646 N. Marine Dr.
Chicago, IL 60640
Phone: 847-529-2407
E-mail: leon_gurvich@hotmail.com





     The efficacy of negative pressure wound therapy (NPWT) to promote healing of open wounds has considerable support in the literature. NPWT promotes wound healing through multiple actions: removal of exudate from the wound to help establish fluid balance, provision of a moist wound environment, removal of slough to decrease wound bacterial burden, reduction in edema and third-space fluids, increase of blood flow to the wound, increase in growth factors, and promotion of white cells and fibroblasts within the wound. Negative pressure brings tissue together, promoting coaptation, which allows the tissues to stick together through natural tissue adherence and increases healing.

     It is postulated that this combination treatment affects the wound healing rate by creating a well-oxygenated, angiogenic tissue bed using NPWT and then activating fibroblasts with platelet-rich plasma gel (PRP). The idea behind applying this particular combination was to increase, according to Chen et al2, angiogenesis in the hypoxic tissue with NPWT and then to “sow” the growth factors from the PRP into the new hypervascular tissue like seeds into “enriched soil.” The NPWT prepares the “ground” by creating numerous new microcapillaries for the platelet-derived growth factors, which then function as natural fertilizer causing proliferation of the fibroblast “crop.”

     Niezgoda et al3 provided further evidence for this approach. They found that using NPWT therapy stimulates the development of angiogenesis in the adjacent tissues underlying and surrounding the wound base to a greater degree than can be achieved with standard wound healing efforts, such as enzymatic treatments, surgical debridements, and local wound care. Chen et al2 reported that using NPWT promotes capillary blood flow velocity, increases capillary caliber and blood volume, stimulates endothelial proliferation and angiogenesis, narrows endothelial spaces, and restores the integrity of the capillary basement membrane.

     Studies in basic science have demonstrated a dose-response relationship between platelet concentration and levels of secretory proteins, and between platelet concentration and certain proliferative events of significance to the healing wound.1 The platelet is a natural source of myriad growth factors and cytokines that promote wound healing. Platelet-derived angiogenesis factor is a polypeptide capable of stimulating new capillary growth by inducing migration of endothelial cells.

References: 

1. Carter CA, Jolly DG, Worden CE Sr, Hendren DG, Kane CJ. Platelet-rich plasma gel promotes differentiation and regeneration during equine wound healing. Exp Mol Pathol. 2003;74(3):244–255.
2. Chen SZ, Li J, Li XY, Xu LS. Effect of vacuum-assisted closure on wound microcirculation: an experimental study. Asian J Surg. 2005;28(3):211–217.
3. Niezgoda JA, Cabigas EB, Allen HK, Simanonok JP, Kindwall EP, Krumenauer J. Managing pyoderma gangrenosum: a synergistic approach combining surgical debridement, vacuum-assisted closure, and hyperbaric oxygen therapy. Plast Reconstr Surg. 2006;117(2):24e–28e.
4. Pietrzak WS, Eppley BL. Platelet-rich plasma: biology and new technology. J Craniofac Surg. 2005;16(6):1043–1054.
Wrotniak M, Bielecki T, Gazdzik TS. Current opinion about using the platelet-rich gel in orthopaedics and trauma surgery. Ortop Traumatol Rehabil. 2007;9(3):227–238.





Post new comment

  • Lines and paragraphs break automatically.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Use to create page breaks.

More information about formatting options

Image CAPTCHA
Enter the characters shown in the image.