Wound Bed Preparation

It’s About TIME

An important aspect of the TIME principle is the need to address non-viable or deficient tissue and restore the wound base and extracellular matrix proteins. In acute wounds, wound debridement is an effective way to remove necrotic tissues and bacteria so the wound can heal with relative ease. This is not the case for chronic wounds, where much more than debridement needs to be addressed for optimal results. Chronic wounds, such as venous ulcers, have a “necrotic burden” consisting of both necrotic tissue and exudate — as such, these wounds can be intensely inflammatory. They produce substantial amounts of exudate that interfere with healing and the effectiveness of therapeutic products such as growth factors and bioengineered skin. Therefore, in the context of wound bed preparation, clinicians need to remove not only eschar and frankly nonviable tissue, but also wound exudate.

Management of nonviable tissue (necrotic burden barrier) through debridement is one key aspect of the TIME principles though which we remove the barriers to closure and provide an optimal wound environment. Expert opinion advocates the removal of nonviable tissue as essential to promoting healing and reducing the risk of local infection, provided adequate blood supply to the wound is present.

This is part 4 of a 12-part series of articles on Wound Bed Preparation and TIME.
The Problem — What is Nonviable or Deficient Tissue?

Nonviable or deficient tissue is collectively termed necrotic tissue or slough. Necrotic tissue may appear black or brown — slough is yellow and fibrous. When the tissue dries out and develops a thick, deficient, leathery texture, it is called eschar.

Necrotic burden is used to describe necrotic material, nonviable tissue, exudates, and high levels of bacteria. Necrotic burden tends to accumulate continually in chronic wounds because such wounds generally result from underlying and uncorrected pathogenic abnormalities such as diabetes mellitus or venous insufficiency. Fully resolving these systemic problems often is impossible; in such cases, wound bed preparation is even more crucial to help facilitate wound closure.

The Solution — Debridement

What is debridement and why is it important? Debridement is the removal of dead (necrotic), devitalized, or contaminated tissue and foreign material from a wound — a key initial step in wound bed preparation.

The removal of necrotic tissue by debridement is important for a number of reasons. First, devitalized tissue in the wound bed will reduce the clinician’s ability to adequately assess the depth of the wound or the condition of the surrounding tissue. Concealed dead spaces can harbor bacteria and increase the risk of local infection. Second, necrotic tissue also may mask signs of local wound infection. Finally, the presence of necrotic tissue is a physical barrier to healing and it supports bacterial growth. Bacterial colonies can produce damaging proteases that can break down important constituents of the extra-cellular matrix and inhibit the formation of granulation tissue and re-epithelialization. Therefore, in addition to removing cell debris, debridement reduces wound contamination and tissue destruction.

Types of debridement. There are five methods of debridement: surgical (or sharp), enzymatic, autolytic, mechanical, and biologic. Several factors can influence the choice of debridement method used, including the size, position, and type of wound; moisture level; pain management; time available for debridement; and the type of healthcare setting. It is also important to consider the patient’s overall condition when choosing the debridement method. In some cases, the use of more than one debridement method may be appropriate (see Table 1 and Table 2).

Surgical (or sharp) debridement. Surgical, or sharp, debridement is the fastest way to remove debris and necrotic tissue from the wound bed. Surgical debridement is sometimes performed when an extensive amount of necrotic tissue is present, which is often the case when the depth of the wound cannot be judged or when widespread infection requires the removal of bone and infected material. In addition to its efficiency, surgical debridement causes minimal damage to surrounding tissues and the minor bleeding that follows the procedure can release inflammatory mediators, such as cytokines, that can assist the wound repair process.

However, surgical debridement has limitations. It cannot be used for patients with bleeding disorders or who are immunocompromised. The procedure may be painful and may cause transient bacteremia and damage to nerves and tendons.

Newer technologies such as the VERSAJET Hydrosurgery System enable surgeons to remove damaged tissue and contaminants precisely without the collateral trauma and infection associated with current surgical modalities. Debridement of traumatic wounds, chronic wounds, and other soft-tissue lesions is achieved in a single step while sparing healthy tissue and permitting the healing process to progress naturally.

Enzymatic debridement. Enzymatic debridement uses manufactured proteolytic enzymes to remove necrotic tissue and cell debris from the wound. When these exogenous enzymes are applied directly to the wound surface, they work with naturally occurring enzymes to degrade necrotic tissue. One of the oldest types of enzymatic debriding agents, used for more than half a century, comprises a combination of papain and urea. Papain-urea products such as GLADASE Ointment provide debridement by first degrading the surface necrotic tissue and then debriding the surface of the wound.

Papain-urea chlorophyllin products such as GLADASE-C Ointment offer a combination of papain urea and sodium copper chlorophyllin that can be applied continuously throughout the treatment period to remove necrotic tissue and liquefy slough; thereby, preparing the wound bed for healthy tissue granulation and healing. Sodium copper chlorophyllin, a chlorophyll derivative, is an anti-agglutinin that may reduce inflammation in the wound. Chlorophyll is known for its ability to reduce odors.

Autolytic debridement. Autolytic debridement occurs naturally, to some extent, in all wounds. A highly selective process, it involves macrophages and endogenous proteolytic enzymes that liquefy and spontaneously separate necrotic tissue and eschar from healthy tissue. Wound dressings that maintain a moist wound bed can provide an optimal environment for autolytic debridement because they allow the phagocytic cells to liquefy necrotic tissue; thereby, promoting granulation tissue. Smaller areas of slough or necrotic tissue can be quickly and safely removed using interactive dressing products that enhance the body’s ability to debride devitalized tissue by the process of autolysis. Maintaining a moist wound surface helps promote rehydration of slough and necrotic tissue while allowing leukocytes and enzymes present in exudates to break down avascular tissue. The speed of this process depends on a number of factors, including the size of the wound and the general physical condition of the patient. In many instances, significant improvement can be observed with 3 to 4 days. For dry wounds, autolytic debridement can be facilitated through the use of hydrogel, transparent film, or hydrocolloid dressings. For exuding wounds, absorptive dressings, such as a foam dressing like Allevyn, or alginate dressings can be used.

Autolytic debridement requires limited technical skill, is easy to perform, and does not damage healthy tissue surrounding the wound. Furthermore, the patient experiences minimal pain with this method. However, it is a slower method of debridement and may be contraindicated if a high bacterial burden is present in the wound.

Mechanical debridement. Mechanical debridement is a non-selective method that physically removes debris from wounds. Examples of mechanical debridement include wound irrigation, whirlpool therapy, and wet-to-dry dressings.

Wet-to-dry dressings are the simplest form of mechanical debridement. These dressings cause mechanical separation of necrotic material, allowing exudates to be absorbed by the dressing and helping to promote new tissue growth.
should be viewed as an ongoing wound treatment process. For these reasons, when treating chronic wounds, debridement is an important part of wound bed preparation. Repair failure; therefore, continuous removal of necrotic burden is likely, and it may be appropriate for acute wounds. Chronic wounds require a single intervention, rather than a single intervention. An extended “maintenance” phase of debridement, which will offer distinct advantages in wound management, has been proposed. Because autolytic and enzymatic debridement are more selective and generally less painful for the patient, these options are the recommended methods of treatment when extended periods of debridement are required.

References

WOUND BED PREPARATION
Removing the barriers

TIME² - Principles of Wound Bed Preparation

<table>
<thead>
<tr>
<th>Clinical Observations</th>
<th>Proposed Pathophysiology</th>
<th>WBP Clinical Actions</th>
<th>Effect of WBP Actions</th>
<th>Clinical Outcome</th>
<th>SOLUTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tissue Non-viable or Deficient</td>
<td>Detective matrix and cell debris impair healing</td>
<td>Debridement (episodic or continuous): - Autolytic, sharp surgical, enzymatic, mechanical or biological - Biological agents</td>
<td>Restoration of wound base and functional extra-cellular matrix proteins</td>
<td>Viable wound base</td>
<td>GLADASE* Pepsin-Usa Debriding Enzyme™</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GLADASE® C Debriding, Cleaning and Healing Gel™</td>
</tr>
<tr>
<td>Infection or Inflammation</td>
<td>High bacterial counts or prolonged inflammation: + Inflammatory cytokines + Protease activity - Growth factor activity</td>
<td>Remove infected foci - Topical/systemic - Antimicrobials - Anti-inflammatory - Protease inhibition</td>
<td>Low bacterial counts or controlled inflammation: + Inflammatory cytokines + Protease activity - Growth factor activity</td>
<td>Bacterial balance and reduced inflammation</td>
<td>ACTICOLL® (with SILVACOL Nanoparticles)?</td>
</tr>
<tr>
<td>Moisture Imbalance</td>
<td>Dessication slows epithelial cell migration Excessive fluid causes maceration of wound margin</td>
<td>Apply moisture balancing dressings - Compression, negative pressure or other methods of removing fluid</td>
<td>Restored epithelial cell migration, dessication avoided - Edema, excessive fluid controlled, maceration avoided</td>
<td>Moisture balance</td>
<td>ALLEVYN®</td>
</tr>
<tr>
<td>Edge of Wound Non Advancing or Undermined</td>
<td>Non-migrating keratinocytes - Non-responsive wound cells and abnormalities in protease activity</td>
<td>Reassess cause or consider corrective therapies: - Debridement - Skin grafts - Biological agents - Adjunctive therapies</td>
<td>Migrating keratinocytes and responsive wound cells - Restoration of appropriate protease profile</td>
<td>Advancing epidermal margin</td>
<td>DERMAGRIFT® Human Fibroblast Derived Dermal Substitute?</td>
</tr>
</tbody>
</table>

For full Prescribing Information see a copy at www.smith-nephew.com or call 1-800-876-1261 or contact your physician